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A dynamic theory of the cubic-to-tetragonal transformation in the p-tungsten structure is
presented starting with a Hamiltonian describing the interaction between static strain and acous-

tic phonons with the electrons in the triply degenerate d bands.

For this model the elastic con-

stants are strongly temperature dependent in the low-frequency limit. However, for frequencies
in the neighborhood of the Debye frequency, they are nearly temperature independent.

1. INTRODUCTION

The cubic-to-tetragonal structural-phase tran-
sition in the intermetallic A;B compounds with the
B-tungsten (8-W) structure has been the subject
of a number of recent theoretical and experimental
papers. =%

These phase transitions are believed to be in-
duced by the interaction of a triply degenerate d
electron band with the elastic strain.® The dis-
tortion from cubic symmetry splits the d bands
into a singlet and a doubly degenerate band lying,
respectively, below and above the bands in the un-
distorted structure. The energy gained by the in-
crzased occupation of the lower band is balanced
by the increase in the elastic energy. The soft
mode associated with the transition is an acoustic

shear mode propagating in a [110] direction polar-
ized in the [110] direction.

The transitions in the B-W structures have been
described in terms of a one-dimensional linear-
chain model to calculate the d-band structure in
the tight-binding approximation. '® The coupling
of the electronic system to the elastic strain was
discussed using a free-energy approach. A simpler
constant-density-of-states model was introduced
by Cohen, Cody, and Halloran!! in terms of which
good quantitative agreement could be obtained with
experimental values. 1114238 yery recently Klein
and Birman'* revived an early suggestion by An-
derson and Blount® that the transition might be
driven by an optical-phonon instability.

In this paper a dynamic theory is presented for
the band Jahn-Teller mechanism based on the elec-
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tron-phonon interaction. The distortion from
cubic symmetry is described in terms of static
contributions to the strain and electron-density
operators. From the requirement that the static
parts of the equations of motion must vanish, ex-
pressions are obtained from which the static strain,
the shift in the band edges, and the repopulation of
the electron bands may be calculated. From the
coupled-mode dispersion relation for the acoustic
phonons and the electron-density fluctuations, re-
normalized sound frequencies may be obtained for
arbitrary frequency and wave vector. A prelim-
inary account of this approach has already been
presented. !°

II. HAMILTONIAN

The Hamiltonian for the noninteracting d elec-
trons will be written

Ha=zs> 23 €Xk)an(k)a,(k) | (1)
n=1 &

where the index »n refers to the three d bands, de-
generate at £=0. The operators a,(k) and a}(k)
satisfy the usual Fermi commutation relations

{a, (&), ate(B)} =8,y Oppr . (2)

The Hamiltonian describing static distortions and
long-wavelength acoustic phonons may be expressed
in terms of localized strain-tensor components.
For cubic symmetry we obtain

Hy=4% 25, Mu(l)+ % C% 20,[ ey,2(1) + €22(1) + e552(1)]

+C% 20 [e41(1) e25(1) + €44 (1) e33(1) + €35(1) e33(1)]

+2C3, 20, [e12(0) + e432(1) + €2(1)] (3)

where u(l) is the ¢c.m. coordinate for the I/th unit
cell. M is the mass of the unit cell. The constants
C,; have units of energy and are related to the
usual elastic constant c;; by

Ci=d’cy; (4)

where a is the lattice constant of the cubic struc-
ture.

Deviations from cubic symmetry are described
by nonvanishing thermal expectation values of the
strains e;(I). We set
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e”(l)=(e“)+u,-,(l) . (5)
For tetragonal distortion,
<eij> = 0, 1’*]

(8)

(ey)=(ez)=e,, (esy)=¢e, .

The fluctuations about the average values of the
strain may be expressed in terms of the normal-
mode coordinates of the acoustic phonons in the
usual way,

wy)=1/N) D XD 5 00)Q0) | (7
Aq
with
a;;(0)=(G/2)(VN) [gie;00q) +q;e,009)] , (8)

where Q(\g) is the normal-mode coordinate for the
Ath acoustic branch of frequency w(rg), wave
vector g, and polarization vector e(Ag). X(I) is
the center of the /th unit cell and N the number of
unit cells.

When Eq. (5) is substituted in Eq. (3), the Ham-
iltonian separates into static terms, terms which
are linear in the fluctuations u,,(l ), and terms which
are quadratic in the fluctuations. For a tetragonal
distortion, the static part of the Hamiltonian takes
the form

HE =CY(e2+ L e,?)+ Clhle2+ 2¢e,e,) . (9)
The linear term may be written
HP = [(Chy + Cloeg + Che, 120, [uyy (1) + ugs()]
+(C% e, +2Che,) 20, ugs(l) . (10)

The term quadratic in the fluctuations is most
conveniently expressed in terms of the acoustic-
phonon normal-mode coordinates

HE =1(M) ? P(Ag)P(\, —q)
+IMT 02g) Q) QN —q) ,  (11)
pY-§

where P()\q) is the canonical-conjugate momentum

to Q(rg)
[Q(g), P(A"q")]=0yyr Opr . (12)

The linear coupling between the strain and the
electron density will be of the form

Hine = Gu(l/N)Z;a[eu(‘ 4)P11(q) + e55(~ q)pa(q) + e35(— q)P33(q)]

+ G1z(1/N)Eq {en(‘ q)[p22(q) + P3slq)]

+e22(= )[P11(q) + P33(@)] + e33(= q)[P11(q) + P22(g )7

+ ZGu(l/N)Eq [e12(=9)Py2(q) + €15(- g)p13(q) + €25(— a)pPes(q)] (13)
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where
plm(q)zzkplm(kq):Ekaty(k)am(k*'q) . (14)

This model differs from a model recently intro-

duced to discuss transition-metal superconductivity39

and the electron-phonon interaction in the 8- tung-
sten structures*®by the presence of the G, and G,
terms. We set

plm(q) N(Dl)élm q,0+Tlm(q) ’ (15)

where (p;) is the average electron density in the

Ith d band and T7,,, describes the density fluctuations.

For tetragonal distortion,

(p1)=(Pz) =P, (16)

and

(P3)=p, . (17)

III. COUPLED-MODE FREQUENCIES

From the Hamiltonian equations (1), (3), and
(13) and the commutation relations [Egs. (2) and
(12)] we calculate the equations of motion for the
acoustic normal-mode coordinates @(A\g) and the
density fluctuations 7;,(q). Setting the static parts
of the equations of motion for @(\g) equal to zero
gives the following relationships:

(C?I - C(I)Z)(ec - ea)+ (Gll - Glz)(Pc - pa) =0,

18)
(CYh+ 2C%) e, +2€e,) + (Gyy + 2G 12)(Pe + 20,) =0 .

For the equations of motion we obtain
52
— 5 Q09)=w’(A) Q0\g)
+-—1—EG ay; N, —9)T.(g)
MN ijim K ig\"% im .

(19)
The equations of motion for the electron operators

a, (k) have no static parts. We obtain
4
i 57 (k)= €a(k) a (k)
+57 2 Gignmeiy(-q)anlk+g) . (20)
q

Separating the static and dynamic contributions of
the strain e;;(g), this equation may be written

i~ a(k)=

Y €,a,(k)

+Tzqci1nmu{j("q)am(k+q) ’ (21)

where

El,z(k) = e;’yz(k) +Gyye, + Gygle, +e;)
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€3(k) = €R)+Gy e+ 2Gpe, . (22)

The coupling shifts the band edges of the d electron
bands. In the distorted structure where ¢, # ¢,
it splits the triply degenerate 2=0 mode into a
singlet mode and a doubly degenerate mode.

The last term in Eqs. (19) and (21) describes
the dynamic electron-phonon interaction. Treat-
ing this interaction in the Migdal approximation“
we obtain a set of equations determining the re-
normalized acoustic-phonon frequencies of the form

w?Q(\q) = w*(Aq) Q(Aq)

20 L GiyimGitjerm

1 1
M N ijim i3

Xay(h, —q)a;; W) Fi(qw)Q0g)

(23)
where
Loy B omk-g)
Finlqw)=—5 Zk) w- €, (B)+e,(k—q) 24

and where n;(k) is the Fermi-occupation-number
factor

n(B)=1/ePC1®r) 1 (25)

€r is the Fermi level and B=1/k5T. In these ex-
pressions €,(k) denotes the electron energies,
shifted because of the static strain according to
Eqgs. (22) and renormalized by the dynamic elec-
tron-phonon interaction. The renormalization
affects only the 2 dependence of the electron en-
ergy.

IV. DESCRIPTION OF PHASE TRANSITION

The structural transition in Nb3Sn and V3Si is
to a good approximation volume conserving. Choos-
ing the undistorted structure as reference point,
we set

-

ea:...

e, . (26)
From Eqgs. (18) we then obtain
3(Ch-Cl)ec+(Gy-Go)p,—p)=0 . (27

Here (p, - p,) is a measure of the difference in the
average electron density along the ¢ axis and the
a axes in the distorted structure.

These equations have a solution e, =e.=p, - p,
=0 corresponding to the undistorted structure
T>T,. For T<T, Eq. (27) may be written

1 1
$(Ch - Che, =~ Gy - 012)7( Zk) POy

1
-m) > (28)
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where from Egs. (22)

€,2k)=€] J(R)+ A,

(29)
€ (k)=€3R) -2
with
A=-3(Gyy - Gyple, . (30)
The Fermi level is determined by
ng=—— T nle,®)] (31)

N kR 1=1

where 7, is the number of d electrons per unit cell.

This model gives a first-order transition con-
trary to the assumption made in Ref. 15. The
supercooling temperature T is defined by the limit
e,~0, T—~ T, From Eq. (28) we obtain

C?l—Ci’z: (Gu‘Glz)aKu(A=0, Ty) . (32)

The superheating temperature 7T, is determined
by (de./dT)|r,==. Making use of Eq. (28),

Kll(Tu)K33(Tu)

0 _ 0 _ _ 2 X
Cll C12 3(611 Glz) ZKll(Tu)+K33(Tu)

(33)

The transition temperature is determined by
equating the free energies of cubic and tetragonal
phases. An approximate free-energy expression
may be written® 2

F=3(CY} - Ch)el+nyep
- (1/B)(1/N) 2, [21n(1 + eB1,2®%)-¢F 1)

+1n(1+e-3[63(k)-EF1)] , (34)

where F is the free energy per unit cell.

So far no assumptions have been made concerning
the form of the d bands. The preceding expressions
simplify considerably if we use a constant-density-
of-states model. ! We set

N(€)=N0a €>0
N(e)=0,

(35)
€<0

for the density of states of the unshifted d bands.
We assume that €x(7=0)>0. The model then de-
scribes nearly empty d bands.

The definitions of the stability limits take the
form

Ch = Cl=5(Gyy — G1p)?Non(0, Ty) (36)
n(4, Tu)n(-— 24, Tu)
2n(A, T,) +n(- 24, T,)

(37
The definition of the transition temperature T,
may be written

Ch - Ch=(Gy - G1p)? Ny

1C97
(CSy - Ch) €X(T,) = ks T No[2f(A, T)n)
+f(- 24, T,) = 3f(0, )]
where
F&, T)= [, deln(l+e™F) | (38)
The Fermi level is determined by
Ng=2Ps+Ps (39)
where
Pa=5Nol(€r — 8)+ (1/8)In(e™F- 4 1)]
(40)

po=5No[(€,+24)+ (1/8)In(e®“F*22)+ 1)] .

The Fermi level at T=0 for the case A>0 is given
by

ng=No€p(0) for €£(0)>A(0) , (41)

ng= (No/3)[€x(0) +24(0)] for €£(0)<A(0) . (42)

The static part relationships Egs. (27), (39), and
(40), derived by the equation-of-motion method,
may be obtained alternatively from the free-energy
expression Eq. (34).

V. BEHAVIOR OF SOUND FREQUENCIES

The renormalization of the sound frequencies
given by Eq. (23) has been obtained by considering
fluctuations about the static thermally averaged
quantities. This assumes that the sound wave does
not induce any repopulation of the electron bands.
This calculation, therefore, applies in the limit
wT>1, where 7 is the relaxation time for elec-
tron transfer. For the very low frequencies used
in conventional ultrasonic experiments, then, wT
<1, and the corresponding low-frequency elastic
constants may be calculated thermodynamically.

It is nevertheless of interest to consider the static
w =0 and small g limit of Eq. (23) in order to com-
pare with the results obtained thermodynamically.
For sound propagation along particular symmetry
directions Eq. (23) is diagonal in AX’. Making

use of the relationship between the sound velocities
and the elastic constants, we may deduce the cor-
responding changes in the elastic constants. We
obtain®?

Ciy= C‘l)l - [an Ky + Glzz(Ku +Ks3)]
Ca3= C?l - [an K33+ 26122 Knl,
Cyp= C(sz - [Gxaa K33+2Gy; Gip Ky
(43)

C13 = C?z - [GIZ2 Kll + Gll GIZ (Kll +K33)] ’

Cys=Cly- Go (Kyg+ Kay)
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Ces= Cou (K12 + Kay) 5

where the functions K;,, are defined by

Ky, =lim F,,(q, 0) . (44)
a0
The diagonal elements have the simple form
1 s 8nle,)
Ky==-=2, —H% .
HTTN 2 o6 k) (45)

For the constant-density-of-states model,
Ky =Kp=(No/3n(a, T), Kig=(Ny/3)n(-24, T).
(46)

The isothermal elastic constants*® are obtained
in the usual way from the second variation of the
free energy in the presence of a static deformation
with respect to this deformation. We obtain*

Cu= C?l - [(Gu - Glz)z/K] Ky (Kyy + Ky3)

Cs3= CY) — [2(Gyy = G15)*/K) Kyy Ky
(47)
C‘z = C?_g + [(G“ - Glz)z/K] Kllz ’
C13= C?a‘i' [(Gu - Glz)z/K] Kll K33 ’
where
K=2K11+K33 . (48)

The expressions for the isothermal elastic con-
stants Cy and Cgq are identical to those given by
Eqgs. (43). The expressions for C;, - Cy, are also
equal, but in general the elastic constants obtained
by the two approaches are different. It is interest-
ing to note that if the dependence of the Fermi en-
ergy on the static deformation is neglected in the
thermodynamic calculation, one obtains the result
of the coupled-mode dispersion relation given by
Eqgs. (43).

In order to calculate the off-diagonal elements
of K, an explicit model form for the wave-vector
dependence of the d bands is required. The elastic
constant C,, changes approximately 4% and 33% for
V3Si and NbgSn, respectively, as the temperature
is lowered from room temperature to 7=T,. This
indicates that the coupling constant G, is much
larger for NbgSn than for V,Si.

For a sound wave propagating in the [110] direc-
tion with its polarization vector along[110], we ob-
tain

1
wi= ((Cgl - C/2M) “oMm (Gn - G12)2Ku) q%.

(49)

If we make use of the definitions for the supercool-
ing and superheating temperatures, this expression
may be written

E. PYTTE

| o>

1
3=’— qz(Gn“ Gla)a

“eTom

% ? [ K13(a=0, T)

-K;(a=0, 7)] (50)
and

1
w3=m q%(Gyy =~ Gyp)?

1 5~ ( 3K, (T)Ky(T) )

Ny ( 2Ty + KTy KD BV
for the cubic and the tetragonal phase, respective-
ly. In the cubic phase the frequency of this mode
vanishes at the stability limit T,, whereas in the
distorted structure it remains finite at the stabili-
ty limit T=7T,. For T> T, the frequency is complex
and the mode is unstable.

For the constant-density-of-states model the
temperature dependence of the elastic constants in
the cubic phase is described by #(0, 7), and the
scale of the temperature variation is determined
by €r. In order to account for the strong tempera-
ture dependence of the elastic constant in this mod-
el, it is necessary to assume that €z(0) lies very
close to the band edge, Tr~100°K. For T < Tg
n(0, T) levels off, its slope being zero at T=0.

In the distorted structure the temperature depen-
dence is determined by n(A, T) and n(-24, T).
Although NbySn and V4Si show very similar be-
havior in the high-temperature phase, they behave
very differently in the distorted structure. Where-
as the elastic constants in NbySn stiffen in the low-
temperature phase, in V;3Si they remain close to
their value at T=T,. For a positive deformation-
potential coefficient Gy, — Gy,, it follows from Eq.
(34) that p, > p, if the c/a ratio is negative as in
NbzSn. The singlet band then has the lower energy
and A>0. From Eqgs. (47) it then follows that at
T=0,

Cy1=Cs3= C?l y Cip=Cyg= C?a . (52)

For V;Si the ¢/a ratio is positive, which indicates
either that the sign of G,, — Gy, or of A is opposite
to that of NbgSn. I Gy, - Gy,<0 and A>0, the elas-
tic constants remain close to zero only if A(0)

< Eg(0), in which case both band edges lie below the
Fermi level in the low-temperature limit. For

Gy1 - G1,>0 and A <0, one obtains for the domain-
averaged elastic constants® in the low-temperature
limit

(Cyp)ay = (Cr2)ay * 2(CYy = CL,)
for - 2A(0) < ex(0)

~0 for —2a(0)>¢€(0), (53)
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which again suggests that both band edges might
lie below the Fermi surface.

1t should be noted, however, that when A(0)
<€p(0), the model containing only a linear coupling
between the strain and the electron density does not
give a stable low-temperature structure. This is
most easily seen by considering the static relation-
ship Eq. (28) in the limit 7=0. For A(0)<¢z(0),
this equation takes the form

Ch = Cl =5 Ny(Gyy = Gyp)? (54)

which is inconsistent with the definition of 7, [Eq.
(36)] because n(0, Ty)<1 for Ty>0. In order to
stabilize the lattice, higher-order strain interac-
tions or higher-order couplings of the strain with
the electron density, ® analogous to higher-order
Jahn-Teller interactions, must be taken into ac-
count.

The coupled-mode dispersion relation yields
strongly temperature-dependent elastic constants
in the ¢=0 limit. For a bandwidth® of 1-2 eV and
€r~100 °K, kp <<qp, where ¢, is the Debye wave
vector. Equation (23) then predicts that the re-
normalization of sound frequencies with ¢~ ¢gp will
be small and only weakly temperature dependent.
Recent neutron scattering data for V,;Si®® show that
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the softening of the elastic constants extends about
halfway to the zone boundary.

VI. CONCLUSION

A Hamiltonian describing the interaction of the
strain and the acoustic phonons with electrons in
a triply degenerate d band has been considered. A
linear coupling of the strain with the electron den-
sity is sufficient to describe the transition for
NbzSn. For V,4Si, higher-order interactions must
be taken into account.

From the Hamiltonian a description of the phase
transition has been obtained, making very simple
approximations. Setting the static parts of the
equations of motion equal to zero yields expressions
for the strain distortion and the repopulation of the
electrcn bands. These may be derived alternatively
from an approximate free-energy expression.
Fluctuations about the average values are described
by linearized equations of coupled acoustic-phonon-
electron density fluctuations. The model yields
low-frequency elastic constants which are strongly
temperature dependent in agreement with the ultra-
sonic experiments, whereas for g ~gqp they are
nearly temperature independent.
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The results of calculations of the generalized susceptibility function x(@) for the rare-earth
metals and thorium and its alloys with rare earths are presented. For the heavy rare earths
Gd, Tb, Dy, Er, and Lu, the calculation was confined to the I'A direction, and a mesh of
450000 points in the Brillouin zone was used. For the double-hexagonal close-packed crystals
Nd and Pr, a mesh of 400 000 points in the Brillouin zone was chosen, while for thorium and its
fce alloys with rare earths, a mesh of 2048 000 points in the Brillouin zone was used. The re-
sults of calculations on Sc and Y have also been included for the sake of comparison with the
heavy rare earths. The matrix elements, which couple the f electron and the conduction elec-
tron, appearing in the expression for the generalized susceptibility function, were taken to be
constant. Our calculations show that the X (@) curves obtained in this way are reasonably
smooth and the scatter of points along the curves is less than 3%. The results have been com-
pared with the experimental data on turn angles, spin-wave dispersion curves, and phonon
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spectra where available.

I. INTRODUCTION

The rare earths form a class of metals which
exhibit fascinating magnetic structures below
characteristic transition temperatures. In gen-
eral, most heavy rare earths, with which we
shall be chiefly concerned in this paper, have
been found to exist in antiferromagnetic phases
with a sinusoidal, a spiral, or a more complex
arrangement of magnetic moments which are
periodic with the periodicity along the ¢ axis.!
The electronic configuration of these metals is
described by a set of closed shells containing 54
electrons corresponding to xenon, a partially
filled 4f shell, and three electrons in the 5d and
6s states. The 4f electrons are highly localized
and retain their orbital moment, as indicated by
the data on entropy and magnetic properties. The
5d and 6s electrons are itinerant, as expected.
Because of the high degree of localization of 4f
electrons, there is practically no overlap between
the neighboring ion cores, the nearest-neighbor
distance being on the average 10 times the ionic

radius. The principal mechanism responsible
for magnetic ordering is believed to be the in-
direct exchange in which the conduction electrons
play a key role to help neighboring ions interact
with each other. The idea is that each 4f shell
moment polarizes the spins of the conduction
electrons in the neighborhood of the ion through
an exchange interaction. The conduction elec-
trons respond with an oscillatory and long-range
polarization, and this in turn aligns a number of
other f moments within the range.

The theory of indirect exchange interaction was
first developed by Ruderman and Kittel? for the
case of nuclei interacting via the hyperfine inter-
action with the conduction electrons. Kasuya®
and Yosida* extended these ideas and obtained the
so-called Ruderman-Kittel-Kasuya-Yosida (RKKY)
exchange interaction for magnetic materials such
as rare earths where there is almost no direct
overlap between the magnetic ions. =% [t ig a5-
sumed in thi_s theory that the interaction of the
Heisenberg S.s type between the f spin § and the
conduction electron spin § is valid. This con-



